杜祖亮 DU ZL
李林松 LI LS
武四新 WU SX
周少敏 ZHOU SM
赵伟利 Zhao WL
白 锋 Bai F
程 纲 Cheng G
赵 勇 Zhao Y
贾 瑜 Jia Y
申怀彬 Shen HB
蔡国发 Cai GF
姚晰 Yao X
鞠婕 Ju J
研究内容和方向 |
研究内容和方向: 本课题组主要从事电化学催化材料的制备合成、催化反应机理、及促进能源转换器件性能提高的研究工作。研究思路基于催化反应的原理出发,通过化学或物理方法制备功能导向的高效、催化材料;进一步通过调控催化反应的表界面结构,优化反应的过程,促进化学反应的快速进行;在催化材料设计和表界面结构优化的基础上,最终实现高性能催化反应体系的构建。 (1) 催化剂的设计合成及反应机理的研究 (2) 催化反应中催化剂的负载及表界面结构修饰与调控 (3) 电化学能源转换器件的构筑及机理研究(燃料电池、锂空气电池)
A Liquid/Liquid Electrolyte Interface Inhibiting Corrosion and Dendrite Growth of Lithium in Lithium-Metal Batteries, Angew. Chem. Int. Ed., 2020, 59, 6397-6405.
Inhibiting Shuttle Effect by Artificial Membranes with High Lithium-ion Content for Enhancing the Stability of Lithium Anode, J. Mater. Chem. A, 2020, 8, 14062-14070
Inhibition of Discharge Side Reaction by Promoting Solution-Mediated Oxygen Reduction Reaction with Quinone Molecules in Li-O2 Batteries ACS Appl. Mater. & Inter., 2020, 12, 10607-10615
Promoting Surface-mediated Oxygen Reduction Reaction of Solid Catalysts in Metal-O2 batteries by Capturing Superoxide Species, J. Am. Chem. Soc., 2019, 141, 6263.
Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries, Chem. Soc. Rev., 2018, 47, 2921-3004
Superaerophobic Electrode with Metal@Metal-Oxide Powder Catalyst for Oxygen Evolution Reaction, Adv. Funct. Mater., 2016, 26, 5998-6004
Surface and morphology structure evolution of metal phosphide for designing overall water splitting electrocatalyst, J. Catal., 2019, 374, 51.
Bimetallic Oxide Fe1.89Mo4.11O7 Electrocatalyst with Highly Efficient Hydrogen Evolution Reaction Activity in Alkaline and Acidic Media, Chem. Sci., 2018, 9, 5640
Tailoring Carbon Materials Substrate to Modify the Electronic Structure of Platinum for Boosting Its’ Electrocatalytic Activity, J. Electrochem. Soc., 2018, 165, F247
Efficient oxygen reduction reaction electrocatalysts synthesized from an ironcoordinated aromatic polymer framework, J. Mater. Chem. A, 2016, 4, 3858–3864
In Situ CO2‑Emission Assisted Synthesis of Molybdenum Carbonitride Nanomaterial as Hydrogen Evolution Electrocatalyst, J. Am. Chem. Soc., 2015, 137, 110−113
Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation, Nat. Commun., 2013, 4, 2390
Hydrogen Evolution by Tungsten Carbonitride Nanoelectrocatalysts Synthesized by the Formation of a Tungsten Acid/Polymer Hybrid In Situ, Angew. Chem. Int. Ed., 2013, 52, 13638-13641
Self-Supporting Oxygen Reduction Electrocatalysts Made from a Nitrogen-Rich Network Polymer, J. Am. Chem. Soc., 2012, 134, 19528-19531 |